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ABSTRACT 
PRODUCTION SCHEDULING IN INTEGRATED STEEL MANUFACTURING 

 
by 
 

Wanxi Li 
 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of Professor Anthony Ross, Ph.D. 

 
 

Steel manufacturing is both energy and capital intensive, and it includes multiple 

production stages, such as iron-making, steelmaking, and rolling. This dissertation 

investigates the order schedule coordination problem in a multi-stage manufacturing 

context.  A mixed-integer linear programming model is proposed to generate operational 

(up to the minute) schedules for the steelmaking and rolling stages simultaneously. The 

proposed multi-stage scheduling model in integrated steel manufacturing can provide a 

broader view of the cost impact on the individual stages. It also extends the current order 

scheduling literature in steel manufacturing from a single-stage focus to the coordinated 

multi-stage focus. Experiments are introduced to study the impact of problem size 

(number of order batches), order due time and demand pattern on solution performance.  

Preliminary results from small data instances are reported. A novel heuristic algorithm, 

Wind Driven Algorithm (WDO), is explained in detail, and numerical parameter study is 

presented. Another well-known and effective heuristic approach based on Particle Swarm 

Optimization (PSO) is used as a benchmark for performance comparison. Both 

algorithms are implemented to solve the scheduling model. Results show that WDO 

outperforms PSO for the proposed model on solving large sample data instances. Novel 

contributions and future research areas are highlighted in the conclusion.  
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CHAPTER 1 INTRODUCTION 

The global steel manufacturing industry remains an essential part of the industrial 

ecosystem, and is also extremely capital and energy intensive. For example, in 2006 the 

iron and steel industry accounted for 1.4% of primary energy consumption in the U.S., 

and 13.6% in China. Over the last two hundred years, metallurgists have improved the 

process and related-material technology in iron and steelmaking to produce better quality 

steel using more efficient methods. The basic oxygen furnace method produces 350 tons 

of steel every 39-40 minutes, while a traditional open hearth process requires 10 to 12 

hours to produce the same output. As the steel manufacturing technology advances and 

the industry evolves, large integrated steel plants began to emerge during the late 19th 

Century, and gradually replaced smaller and special-purpose steel mills during the 20th 

Century as production scale was leveraged by the newer facilities. The 1980s saw 

significant merger and acquisition activity among steel manufacturers all over the world 

as firms pursued the major capacity targets of over 30 million tons. In the U.S., there 

have been over 20 acquisitions since 1985. This accounted for 30% of domestic 

steelmaking capacity. In 2007, the top 15 steel manufacturers produced one third of steel 

volume worldwide. As both the scale and the complexity of steel production have 

increased dramatically, even greater challenges are now imposed on managing the 

production operations in these large-scale facilities.  

 As the steel industry has advanced, so has the need for and importance of more 

sophisticated approaches to managing and scheduling steel production. Mathematical 

programming approaches gained attention after the seminal paper by Fabian (1958), who 
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first proposed a model that examined the order batching policies. These policies 

coordinate multi-stage steelmaking operations. After that, research was being developed 

to improve the utilization and reduce production cost of a single stage by applying 

mathematical programming models. A paper by Tang et al. (2001) provides one of the 

most comprehensive reviews of schedule optimization research in the steel industry. 

Since then, a second generation of research emerged in which the focus shifted away 

from studying steelmaking operations in isolation to a focus on understanding how 

modern integrated steel production plants work and on developing integrated production 

schedules. In retrospect, the timeline of this shift in focus also coincided with the steel 

industry consolidation summarized earlier.  

 Because early researchers evaluated the production stages separately, the usual 

model objective focused on cost reduction for a single stage without fully exploring the 

impact on downstream stages. For example, production schedules that optimize the steel 

melting process to obtain stage-wise lowest unit cost may negatively impact the 

downstream rolling mill operations or annealing operations since these stages often focus 

on a different set of production factors. A coordinated production schedule in this case, 

synchronizes the three production stages and thus improves the efficiency of the overall 

production process. But as researchers examined the integration of multi-stage steel 

manufacturing processes, this coordinated scheduling model is critical to capacity 

utilization and overall cost reduction. Without the guidance of such scheduling model, 

coordination across different stages may result in operating inefficiently in each stage, 

and the overall production cost could increase substantially as noted by Lee et al. (1996). 
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 In addition to the operational challenges describing the current state of integrated 

steel manufacturing, another hurdle some researchers attempted to address was the 

computational challenge associated with more sophisticated mathematical programming 

models. For example, Blocher et al. (1999) studied a changeover scheduling problem 

with product-dependent changeover costs and times. The problem is NP-complete (Non-

deterministic Polynomial-time) because the time required to solve the model to 

optimality increases exponentially as the problem size increases. As the authors noted in 

their study, even relatively small to medium sized problems could not be solved within a 

practical time window. As a result, effective solutions to this type of problems often 

require sophisticated heuristic methods, or very powerful High-Performance Computing 

(HPCs) systems. Because HPCs are not as generally accessible, heuristic solution 

techniques have proved to be widely accepted for solving these scheduling problems 

today. The complex nature of modeling production schedules for most any small or large 

integrated steel manufacturer means that heuristic approaches represent an important and 

viable solution approach.  

 This study makes two important contributions to the literature. First, a production 

scheduling model for integrated steel manufacturing is proposed, and the model of a two-

stage production scheduling process is simultaneously solved based upon our observation 

of current operations at a large US manufacturer. As the literature shows, this area is still 

in need of further study. Second, because of the well-known dimensionality curse of the 

problem that when the dimension (production items or number of production stages) of 

the problem increases, the size of the solution searching space increases exponentially. 

We devise a new heuristic approach to solve the proposed model, and offer effective 
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solutions to the integrated scheduling problem. The problem formulation investigated 

here cannot be easily solved by any industrial grade commercial software package given 

the scale of larger problem scenarios. As a result, the heuristic must be efficient and can 

be executed within a short period of time. The rest of this chapter introduces the steel 

manufacturing process and the research problem examined.  

1.1 Overview of Integrated Steel Manufacturing 

In general, most integrated steel manufacturing operations usually consist of four 

production stages: (1) iron making, (2) steelmaking, (3) rolling, and (4) finishing 

processes.  The Iron making stage extracts iron from ores, usually in blast furnace, and 

the intermediate iron product is called ‘pig iron’ and it generally contains 4-5% carbon 

and other impurities.  Second, pig iron can be converted into steel during the steelmaking 

stage where iron is melted in either basic oxygen furnaces or electric arc furnaces. 

Though carbon and other impurities like sulfur are further removed, some metals such as 

chromium, manganese, may be added to produce alloy steel. Then the molten steel is cast 

into desired forms including slabs, ingots, or bars. In the rolling stage (stage three), slabs, 

ingots or bars are passed through rolling trains along rails, and are formed into various 

gauges of steel coil, wire, or into thinner slabs. The Finishing stage generally consists of 

one or more processes such as surface finish, mechanical properties, and coating (Lee et 

al. 1996). The final form of the finished steel depends on the type of items each 

individual plant was designed to produce. For example, Vasko et al. (1991) study a U.S. 

steel plant that produced steel plates. The plates are used to produce railroad cars, ships, 

or boilers.  Dawande et al. (2004) examine a steel plant that produces steel sheets from 
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large slabs. The steel sheets are commonly used in producing household appliances and 

machines.  

 Figure 1 (Tang and Wang 2009) illustrates the processes of a China-based 

integrated steel manufacturer’s plant.  Iron making, steelmaking and rolling are on the 

left, and the finishing stage is on the right.   An integrated steel manufacturer may operate 

using some combination of, or all four stages.  For example, a plant can be dedicated to 

producing only steel slabs, and its customers could have their own internal rolling and 

annealing capability, but none of the first two stages.  

	
  
 Figure 1: A Steel Manufacturer Plant Illustration 

 

1.2 Motivation and Challenges 

The previous section described the primary steelmaking environment (PSM). Another 

operational orientation found in the industry is referred to as secondary steelmaking 

(SSM). The secondary steelmaking process is distinguished from PSM in several 

important ways. First, SSM processes use scrapped steel as the major direct raw material 

input rather than iron ores as in PSM, and electric arc furnace (EAF) technology is used 

instead of basic oxygen furnace (BOF). Second, the Iron-making stage is not necessary in 
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SSM plants. Essentially, recycled or scrapped steel is melted in an EAF, and then cast 

into slabs or bars before rolling. However, using the less expensive scrap as raw material 

creates certain cost and quality trade-offs. The chemical impurities that are introduced to 

the SSM process are more difficult to control because of the wide variety of scrap 

material delivered to the SSM manufacturer on a daily basis. For example, in PSM iron is 

extracted from iron ore and impurities like carbon and sulfur can be removed in heating. 

Other metals can be added as needed. However, in SSM scrap material comes from junk 

cars, recycled cans, bottles, or recycled packaging and construction materials. In addition 

to the impurities such as carbon or sulfur, residuals of other metals will remain in the 

SSM and make the steel quality control much more challenging. Moreover, when the 

SSM manufacturer also offers its customers various product grades, the optimization of 

production schedules is further complicated. Therefore in order to better control the 

chemical composition and to avoid production mismatches, the production scheduler 

would like to avoid dramatic changes in the chemical composition between successive 

production sequences. Therefore an effective scheduling mechanism can have significant 

influence on the production efficiency and capacity utilization.  

 Another reason that production scheduling research in steel manufacturing plays 

so significant role is that coordination across the different manufacturing stages is more 

complex and strategically relevant as the industry structure evolved. Fierce market 

competition required today’s firms to focus on integrated operations optimization instead 

of single-stage optimization. This is especially the case today given the intense 

consolidation in the steel industry occurring over the last decade. For SSM operations, 

the steelmaking and rolling stages often follow completely different planning disciplines: 
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one based upon on chemical composition, the other on physical dimensions. A scheduling 

mechanism that reconciles both interests can more effectively meet the company’s 

aggregate requirements. This study is timely and relevant because SSM research on 

multi-stage scheduling problems is still very new and available studies are limited.   

1.3 Research Problem 

Production scheduling models using mathematical programming techniques can address 

various short-term production planning problems, and changeover scheduling represents 

the type of problem in which production setup times/costs varies depending on product 

types or production sequences (Blocher et al. 1999). Their model can be applied to 

different production scenarios such as processing industry (paper, steel manufacturing), 

or discrete product manufacturing (consumer electronics). More complex model can be 

developed based on the changeover scheduling structure to reflect complicated 

production processes, such as more than one production stage and production 

coordination. In this study, we try to address a production scheduling problem with 

sequence-dependent production setup times in a multiple production stages scenario. In 

particular, we formulate a model for a multi-stage production scheduling case in a SSM 

plant. Though specification of the proposed model is aimed to SSM production 

environment, our modeling method and solution approach can also be applied to other 

production scenarios where there are similar production characteristics.  

The integrated steel plant structure focused in this study has one EAF used for 

secondary steelmaking, and one continuous casting facility used for casting molten steel 

into billets of uniform dimension. In hot rolling, the billets are re-heated before being put 

onto the rolling rail. A set of roller trains is then set up along the rail, and the steel billets 
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are formed into steel wire according to the configured diameter sizes desired by 

customers and sequenced by the production scheduler. The end product is reels of 

industrial-grade steel wire that are characterized by the grade and (diameter) size. The 

model proposed here focuses on coordinating production schedules for both 

manufacturing stages, rather than trying to find separate optimal schedules for each 

operation. Because the throughput rate and operating interests are always found to be 

disparate between the steelmaking and rolling stages, an integrated schedule scheme 

provides an alternative, hopefully broader basis for studying the steel production problem 

here.  

 Scheduling production of the integrated steel plant is very challenging primarily 

due to the complexity of each individual production stage, the disparate nature of these 

stages, and the inherent challenges of secondary steelmaking.  There is a rich history of 

schedule optimization research in the single-stage scenario by Tang et al. (2001), which 

summarizes scheduling applications in steelmaking and continuous casting processes.  

However, more recent research has been reported in Chen et al. (2012), Höhn et al. 

(2012), and Tang et al. (2011), which focus on different production stages and processes. 

On the other hand, there is very limited literature on multi-stage scheduling and order 

release. In fact, this stream of literature is only now beginning to appear.  For example, 

Safaei et al. (2010) study a multi-site steel production-distribution planning problem, 

which focuses the integration of production and distribution. Tang and Gong (2009) 

present a model for scheduling production, the product transportation and a batch 

processing subsequently. The study proposed here is motivated by both the steel industry 
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evolution (the evolution of industry practice) and the coordination research beginning to 

emerge in this area as a result of customer, product, and processing dynamics for SSMs. 

The rest of this dissertation is organized as follows. Chapter 2 conducts a 

literature review. Then a production scheduling model and the data structure developed 

during the conduct of this research are presented in Chapter 3. Chapter 4 presents an 

experiment design and the solution experience of solving a series of small problems. 

Chapter 5 develops meta-heuristic approaches and discusses the implementation of the 

algorithms. Numerical parameter study and large sample performance comparison are 

presented in Chapter 6. The last chapter concludes this dissertation and outlines future 

areas. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews the literature on production order scheduling in the integrated steel 

manufacturing industry. Based on the early research by Fabian (1958) and two review 

studies published in 2001 (Tang et al. 2001, Dutta and Fourer 2001), we detail the 

significant research published after 2001, and segment the research by the steel 

manufacturing stage to mirror published work. Models and heuristic methods applied in 

these studies are also summarized and tabulated.  

 Production scheduling research nesting in the steel industry is well established 

and dates back some seventy years. However, as both the steelmaking technology and 

industry structure have evolved so have the modeling and solution approaches used. 

Fundamentally, the scope of the research problem has progressed from the examination 

of a single-stage production activity to that of multiple-stage production and inventory 

coordination decisions. This is due to increasing need to understand the impact of 

production decisions in multi-stage operating environments rather than in isolation. The 

expanding problem focus is also the result of significant merger and acquisition activity, 

which resulted in dramatic increases in production capacity and the operational 

complexity among surviving firms. The first half of this literature review summarizes the 

scheduling research according to the focal production stages investigated. More 

importantly, research on multi-stage operations is reviewed in order to provide a more 

precise background of the research stream in which this dissertation nests. In the second 

half of this review, various heuristic techniques reported in the literature and used to 

solve the related scheduling models are summarized. This review of solution approaches 
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explicates the fit and appropriateness of the selected family of heuristic solution methods 

devised for the problem investigated here.  

2.1 Production Scheduling in Steel Manufacturing 

Fabian’s (1958) seminal paper used linear programming to study the optimal product mix 

that results in lowest cost for an integrated iron and steel production plant. For its time, 

this state-of-art model optimized the different production stages (coke production, iron 

production, steel production, and rolling and finishing production).  Each of the stages 

was assumed to be linked by the material consumption rate between them. The resulting 

formulation was a linear programming model, which is to optimize the economical 

consumption rate of input material at each stage of the steel manufacturing. The solution 

can satisfy the input and output material flow constraints at each production stage, and 

achieve the required production output rate. The main research focus in the study was not 

scheduling per se.  Rather it was the modeling technique deployed and the suggestion that 

future work must broaden the problem scope given the changing industrial landscape. As 

a result, Fabian’s (1958) work inspired a significant amount of subsequent research in the 

steel industry. The work was also the very first industrial application to integrated 

steelmaking scenarios involving mathematical programming (MP) techniques.  

 Since the work of Fabian (1958), research and applications in production 

scheduling for a single-stage in steel industry grew dramatically as researchers and 

practitioners examined the details of the production processes, and applied MP 

techniques to practice. For example, the scheduling problem in casting processes is 

studied by Vonderembse and Haessler (1982), Box and Herbe (1988). Lopez et al. (1998) 

study the rolling production schedule in a hot strip mill that produces steel coils from 
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slabs. Tang et al. (2000) examine the steelmaking and casting scheduling in a large 

integrated steel manufacturer in China. The scheduling research reported between 1950-

2000 is reviewed comprehensively by Tang et al. (2001). Dutta and Fourer (2001) study 

mathematical programming applications in steel industry in general. To recognize these 

two independent review studies and form the research ground of our paper, we highlight 

the contributions of the two simultaneous studies in our review.  

 In the review paper by Dutta and Fourer (2001), applications in steel 

manufacturing using mathematical programming models are categorized into six different 

application categories. They include steel-planning models for national economics, 

product mix models, blending models, scheduling, inventory and distribution models, set-

covering applications, and cutting stock problems. Each of these categories adopts 

different perspectives, study several production stages, and use various approaches. The 

problem studied in our paper falls into the scheduling category.  

 During the same time period, Tang et al. (2001) published a review study for 

planning and scheduling of integrated steel production plants. The study examined 

specific operational stages including steelmaking, continuous casting, and hot rolling 

production. The authors also concisely summarize earlier research on scheduling 

challenges in the continuous casting context and which prevailed during the 1970s. They 

first outlined the characteristics of integrated steel production for continuous casting 

process scenarios. Then they introduced the production management systems prevailing 

in the industry at that time, primarily in Japan. The relevant planning and scheduling 

models reviewed were grouped by methodological orientation, namely OR-based model, 

AI-based model, and human-machine coordination. The most influential research in each 
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group was also discussed. The authors conclude their review by identifying some key 

issues and future research directions. Of them, the multi-stage production scheduling for 

steelmaking is one of the main issues mentioned.  

 Given the research trajectory paved by these early researchers, this dissertation 

proposes to extend the understanding of the multi-stage production scheduling problem 

based upon collaboration with an SSM producer of industrial grade cable wire.  The next 

part of this discussion reviews literature appearing since 2000, and that is germane to 

integrated steel manufacturing.  The few studies in the multi-stage scheduling context are 

also discussed in this section.  

2.1.1 Scheduling Research: Iron-making, Steelmaking, and Continuous Casting 

Processes 

Naphade et al. (2001) study how to schedule the ingot formation process in steelmaking. 

A tactical mixed integer programming (MIP) scheduling model proposes which specific 

ingot batches should be produced from a certain production run (or production heat). It’s 

structurally similar to allocation problems. The model is formulated to be executed on a 

weekly basis at it tries to balance the cost of wasted production against the total tardiness 

of all ingots. The solution procedure first decouples the scheduling problem into two 

levels. Then a neighborhood search heuristic is developed to solve each problem level. 

The steelmaking process under study is a traditional one as ingots are considered to be 

intermediate products feeding into a continuous casting process. Tang et al. (2002) also 

study a continuous casting steelmaking process. The cost trade-off between cast breaks, 

energy lost during production idle, and earliness/tardiness are all incorporated into the 

MIP model proposed. The authors use Lagrangian relaxation to decompose the model 
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into sub-problems.  Dynamic programming is then used to solve each sub-problem.  In 

the last step, a two-phase heuristic is used to recover the original problem and identify 

feasible solutions. A similar solution method is detailed in the study by Tang and Xuan 

(2005).  

 Denton et al. (2003) study a make-to-stock (MTS) system in steelmaking and 

casting.  The novelty here is the authors’ focus on managing the product variety in an 

integrated steel mill. Their approach is to identify the slabs to produce for MTS in the 

first step. They then develop production schedule for chosen slabs, but purchase other 

slabs from outside sources. While the two-stage mathematical model is not presented in 

their paper, the authors do report on their model implementation at the steel mill where 

improved inventory utilization resulted.  

 Huegler and Vasko (2006) propose a machine scheduling model for the 

steelmaking stage of a meltshop. They discuss the efficacy of meta-heuristic solution 

procedures to solve the scheduling problem for different working stations that are 

upstream from continuous casting process. The desired schedule should satisfy the 

metallurgical optimized sequence in the casting process. Domain-specific heuristics for 

each process feed into the meta-heuristics, namely generational evolutionary 

programming, steady state evolutionary programming, and simulated annealing. The 

benefit of separating the domain-specific heuristics and the meta-heuristics is that either 

one can be improved or changed without impacting the others. For example, 

Atighehchian et al. (2009) develop a Hybrid Ant Colony and Non-linear Optimization 

heuristic (HANO) to determine the routing of jobs between different facilities and the 

sequence to process jobs. It is shown that the preferred schedule found through HANO 
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would have lowest cost including cast interruption, energy loss, and waiting time penalty 

in all job cases tested. The authors show that, in 95% of the test cases, HANO also 

outperforms a competing Genetic Algorithm designed to solve the same problem. 

 The steelmaking in the continuous casting context is still a widely-used process 

orientation today. As a result, the scheduling research in this area continues to be reported. 

However, additional study is needed to understand the impact of effective scheduling 

across multiple production stages such as hot rolling. With this background, our research 

focus is to address this schedule coordination problem across production stages.  

2.1.2 Scheduling Research: Rolling and Finishing Processes 

Rolling processing is another major production stage in steel manufacturing and 

generally follows the steelmaking stage in most settings. The difference here is that the 

rolling process must consider the physical dimension of the steel product as the most 

important determinant of actual production rolling sequence.  This decision influences 

cost and efficiency due to the need for major and minor setups between product sizes and 

product families. By contrast, the products’ chemical composition influences cost and 

efficiency during the steelmaking stage. This product-dependent setup cost situation 

shares similar characteristics to the changeover scheduling study by Blocher et al. (1999). 

In this section, we summarize the ‘rolling’ production scheduling research appearing 

since the late 2001. This is the same timeframe as the steelmaking scheduling literature 

described in the previous section. Our aim is to provide a coherent view of the current 

state-of-the-art not only for each stage in isolation, but also to identify new research 

opportunities in multi-stage context.  
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 An early study by Cowling (2003) demonstrated a coil rolling scheduling system. 

In that study, the author specifically accounted for physical coil dimensions and order due 

dates when generating cost-efficient schedules. Unfortunately, the mathematical 

formulation was not provided in the paper so it is not possible to assess specifics of the 

model.  Nevertheless, the work does represent an early successful demonstration of the 

efficacy of Tabu Search heuristic to solve the model. The study also reported a semi-

automatic scheduling procedure that can be easily used to schedule and reschedule 

production when disruptions occur. Tang and Huang (2007) then study the hot rolling 

process of seamless steel tube production. They model a flow-shop scheduling scenario 

described by the classic sequence-dependent setup times between product types. The 

objective finds the minimal makespan of the rolling batches. The authors first develop a 

Branch-and-Bound method to solve optimally a small-scale problem. Then they continue 

by evaluating a two-step heuristic using neighborhood search methods for their large-

scale problems. An interactive scheduling procedure is also illustrated to explain how the 

model and solution method could be applied to the seamless steel tube manufacturer.  

 In a continuing study of steel tube manufacturing by Wang and Tang (2008) the 

steel slabs are then batched into a number of production “turns”. Each “turn” is scheduled 

based on the physical dimension, temperature, and early/late tardiness. The proposed 

mixed integer programming (MIP) model is solved by similar Tabu Search heuristics 

which also provide near-optimal solutions for large-scale problems. Their objective 

function structure is similar to that of the model developed in this proposed dissertation.  

But our focus here differs in terms of operational context. Recently, Chen et al. (2012) 

investigated a rolling system similar to Wang and Tang (2008). In the Chen et al. (2012) 
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context, steel slabs were converted into coils, which are reels of thin and flat steel sheet. 

The objective function of their model minimized the changeover cost and 

earliness/lateness penalty while satisfying production rolling constraints. The solution 

approach included aggregation of production orders into subgroups of the orders using 

special criteria such as setup/changeover costs and order completion priorities. A 

modified genetic algorithm is used to solve the order selection and sequencing scheduling 

problem. The solution is then coupled with extremal optimization as the local 

improvement algorithm. The solution method consistently generated better solution over 

simple genetic algorithm alone. Tang et al. (2012) further extended the steel rolling 

scheduling problem by incorporating stochastic demand and volume-dependent 

production cost. The model approximates schedules by recommending lot sizes for each 

planning period. The objective minimizes the combined production and inventory 

carrying cost via a mixed-integer non-linear (MINLP) formulation. The model is 

piecewise linearized and solved by the stepwise Lagrangian relaxation heuristics. The 

authors report near-optimal solutions.   

 Finishing processes in steel manufacturing are known to vary dramatically 

between plants due to the uniqueness of the final products. For example, color coating is 

used to satisfy customers’ special color and metal requirements, and annealing is used to 

enhance the physical and surface quality of the final steel product. Tang and Wang’s 

(2009) study developed a mixed integer nonlinear programming (MINLP) model to 

investigate the color coating process. The objective minimizes the total penalties incurred 

by order switching, changeovers of sizes, rollers, and embossing type, delivery tardiness, 

and setups. A tailored Tabu Search heuristics method is applied to find near-optimal 
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solutions. Two strategies are implemented to improve the Tabu Search performance. The 

specialized heuristics utilize feasibility checking and coil batching, and are described in 

detail by the authors.  

 Tang et al. (2011) present an improved Lagrangian relaxation algorithm for order 

batching decisions in the steelmaking annealing process. Although this paper does not 

clearly fall into the scheduling research category, even though the modeling techniques, 

the solution procedures, and the problem context are closely-related to our proposed 

research. Höhn et al. (2011) extend Tang and Wang (2009) by investigating a more 

complex color-coating process described by shuttle coaters. This advanced form of 

processing addresses the need for changes in steel color, roller changes, and the 

concurrent setup of rollers and color change. They minimize the makespan of a set of 

steel coils being planned. The solution method is Genetic Algorithm-based heuristics and 

the authors report implementing the model at a German steel producer to reduce 

makespan.  

 To summarize, scheduling research in rolling and finishing production stages has 

largely focused on criteria such as changeover cost, earliness/tardiness penalties, batching, 

and makespan. Many of these modeling criteria have been captured as objective function 

components, decision variables, and data parameters. They are also reflected in this 

dissertation.  Additionally, the broad array of heuristic methods appearing in this research 

stream provides strong justification for the solution approach proposed in this study as 

well. But the fundamental contribution offered to the literature by this research is the 

examination of coordinated scheduling schemes across two separate production stages. 

The model developed for this research may provide a better understanding of the overall 
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production decision alternatives and the interplay among the problem parameters and 

schedule cost. While additional research on the rolling or finishing processes in isolation 

may improve stage-wise performance, such a singular focus could also impose potential 

impediments on downstream or upstream steel manufacturing processes. This could 

likely undermine overall production effectiveness given the current integrated nature of 

the industry.  

2.1.3 Related Multi-stage Scheduling Research 

Multi-stage scheduling research in steel manufacturing is scarce. Li and Shang (2001) 

then use a similar input-output modeling framework to synchronize the material flow 

between coke production, iron making, steelmaking, and plate/wire rolling. Planning 

guarantees energy and material requirement for each process, and tries to maximize 

production value while minimizing environmental emission. The authors consider input 

material availability between successive stages. By contrast, our proposed study focuses 

on cost of changeover, earliness/tardiness penalty details.  

 Tang and Liu (2007) present a production order scheduling system in the same 

spirit of production coordination across different steel manufacturing stages as our 

research proposes, but with a different focus. The proposed model routes production 

orders across several key operations in different steel production processes, and decides 

the exact starting and finishing date, and the fraction of orders to produce. The objective 

is to achieve the lowest weighted total completion time of all production orders. Tang and 

Liu (2007) introduce a combination of Lagrangian relaxation, LP, and subgradient 

optimization heuristic approach to solve the large-scale problem. They generate 

promising solutions. While the scope of the model covers operations from iron-making to 
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the last finishing process, cold rolling, it is a much broader focus than study being 

proposed here. Yet this proposed research offers a novel contribution in that the operating 

processes are scheduled tactically (daily or hourly). Tactical scheduling implies that a 

dispatching heuristics is needed for each specific operation to determine the exact starting 

and ending run time of the production orders. In this sense, the models proposed in 

previous literature resemble a lotsizing approach rather than a pure scheduling model as 

in our research.  

 The second departure from Tang and Liu (2007) is focus on minimizing weighted 

total order completion time of a complex, high-volume production scenario. The purpose 

is to achieve better order fulfillment, on time completion, and better customer service 

level. While in our study, the combination of changeover cost and tardiness penalty drive 

the performance of the schedule. Vanhoucke and Debels (2009) use a similar modeling 

approach to schedule the orders across different operations of the steel plant. But they 

focus on minimizing the production cost, which includes utilization cost, assignment cost, 

and earliness/lateness cost. They first decompose the problem into machine assignment 

and machine scheduling sub-problems. Then a greedy local search algorithm is used to 

find the solution for the model. The study is based on a Belgian steel producer.  

 Tang and Wang (2011) study production scheduling problem for hot rolling 

process in steel industry. They formulate a flowshop scheduling model to minimize the 

makespan of all production jobs. The key element is the job processing time given 

different batching and sequencing on processing machines, and the objective is to 

improve the utilization by minimizing the makespan. The flowshop formulation does 

incorporate multiple machines into the model, but the structure is quite different from 
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changeover scheduling in a multi-stage setting, which is the proposed model structure in 

this study.  

 This dissertation follows this research stream of coordinated steel production 

scheduling, and the problem under study is a tactical rather than strategic orientation. We 

investigate the exact production starting and ending time at the smallest incremental time 

unit (the minute level). This is done in order to control the production and related costs 

more precisely without losing sight of customer order fulfillment requirements. This 

“tight” control of schedule is considered critical especially when the different production 

stages have disparate production rates, and the speed of processing is production-batch 

dependent. For these reason, the research will also extend the literature in the coordinated 

scheduling area.   

2.2 Solution Approach 

The solution methods for scheduling model using mathematical programming are mostly 

heuristics, since the models are often found to be hard to solve. As Blocher et al. (1999) 

point out, changeover scheduling belongs to NP-hard (Non-deterministic Polynomial-

time hard) problems that the time to solve the models increase exponentially with the 

problem size. And no known algorithms can solve medium to large-scale problems of this 

type to optimality within practical time. In order to obtain effective solutions within a 

reasonable time limit, researchers usually develop heuristic methods that find near 

optimal solutions. In the scheduling literature summarized above, large-scale problem 

instances are mostly solved through heuristic methods to near optimal, instead of global 

optimality (Tang et al. 2001, Cowling 2003, Vanhoucke and Debels 2009, etc.) 
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 In order to quickly and efficiently obtain the best solution possible, researchers 

explore a variety of heuristic approaches to tackle the problems. As a result, we have 

found almost all heuristic approaches known to date are applied to the scheduling 

problems in steel manufacturing. Our aim is not to comprehensively review this vast 

body of heuristic approaches in the literature. Although this is not the aim of the work 

here, we do summarize the breadth of heuristic methods most closely-related to the 

proposed study. Table 1 clusters the research literature by each author’s solution 

approach.  

Table 1: Taxonomy of Solution Methods 
Solution Method Authors 

Lagrangian Relaxation 
Tang et al. (2002), Tang and Xuan (2005), Tang 
and Liu (2007), Tang et al. (2011), Tang et al. 
(2012) 

Branch and Bound Tang and Huang (2007) 
Simulated Annealing Huegler and Vasko (2006) 

Artificial Intelligence Dawande et al. (2004), Huegler and Vasko (2006), 
Vanhoucke and Debels (2009) 

Greedy Approach Vanhoucke and Debels (2009) 
Neighborhood based 
heuristics Naphade et al. (2001), Tang and Huang (2007) 

Genetic Algorithm Höhn et al. (2011), Chen et al. (2012) 

Ant Colony Optimization Atighehchian et al. (2009) 

Evolutionary Optimization Huegler and Vasko (2006) 

Tabu Search heuristics Cowling (2003), Wang and Tang (2008), Tang and 
Wang (2009) 

Particle Swarm 
Optimization Tang and Yan (2009), Tang and Wang (2010) 
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This summary of solution approaches serves for two purposes. First, it provides 

good overall foundation of the best approaches in the area. Second, as we devise the 

solution approaches for our own models, it will provide a good sense of the applicability 

to this two-stage problem and serve as a performance benchmark. 
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CHAPTER 3 THE MODEL 

This chapter discusses the multi-stage scheduling model in detail and highlights the 

current challenges and research opportunities. Then the scheduling model specification is 

presented. The model has similar characteristics to the class of vehicle routing problem 

with time window (VRPTW), and is known to be NP-hard. However, the model proposed 

in this dissertation is quite different from VRPTW. In addition to the practical production 

constraints, the multi-stage nature of the model requires that production activity of 

downstream stage (vehicle) should be scheduled no earlier than upstream stage (vehicle). 

As a result, the proposed model is an extension of the VRPTW problem, and is also NP-

hard. This chapter also illustrates the structure of the steel production batch data used in 

the scheduling model.  

3.1 Problem Description 

The problem studied in this research is motivated from our industrial experience with a 

producer of industrial grade cable wire, who has two billion dollar annual revenue. The 

steel manufacturer headquarter in this study locates in the mid-western area of the United 

States, with plant operations throughout the Midwest. The plants are secondary 

steelmaking facilities in which recycled scrap metal from commercial grade products, 

such as junk cars, are the primary input raw material that is used to make various grades 

and sizes of steel wire cable. Electronic arc furnace (EAF) is used for melting recycled 

scrap materials. Despite the benefit of EAF on energy saving compared to traditional 

blast furnace (BF) and basic oxygen furnace (BOF), only an estimate of less than 5% 

tonnage produced in the US applying the technique in 2009. All top five steel producers 
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in China use traditional BF and BOF technique. The EAF steel plant has both 

environmental and cost benefits, but it also provides challenges in production operations. 

Impurities in the scraps are hard to control and changes of steel grade in production must 

be well managed in order to minimize the impact of quality and efficiency. Given the 

recycled nature of raw materials and the technical specifications of each customer’s order, 

other mixtures of pure metals, such like manganese, chromium, copper, etc., may help to 

formulate exact mixing/melting recipes. The recipes are engineered to customer 

specifications and melted during each melting cycle. The liquid metal is poured into a 

buffering tundish, which can hold the liquid metals for continuous casting process.  

 The precise grade or quality of steel is monitored during the melt process. 

Adjustments in the precise grade of molten steel can be made on-demand to match the 

required quality range of all assigned production batches. The single set of casting 

machines then forms the molten steel into fixed dimension steel billets. The billets are 

then moved to an open yard staging area for cooling. The next stage is the rolling process 

with an average throughput rate of over a hundred tons per hour. Before the rolling 

process begins, cooled billets will be moved from inventory or from the cooling area into 

a reheating tube according to the rolling production schedule. The cooled billets are 

reheated in preparation for processing through the hot rolling train where the billets are 

gradually forged into a specific diameter size cable wire. As an inventory buffer stage, 

the reheating process will pace the rolling schedule. As a result, only sufficient volume of 

billets is actually reheated prior to each rolling cycle. Depending on the specific orders 

scheduled and sequenced to roll, the rolling train lines may be subject to minor and major 
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changeovers/setups. The rolled steel cable wire is then moved to an open yard where it is 

staged for final packaging, loading and shipment release.   

 The two processing stages, steelmaking and (billet) rolling, currently are 

scheduled separately, and the individual utilization rate of the two stages is considered 

quite good. The steelmaking stage generally paces the rolling production, as the usual 

scheduling priority is to provide what is needed for the rolling stage in a timely manner. 

However, the difficulty often facing schedulers is that the realized (average) throughput 

rate of the rolling facility is different than that of the steelmaking stage. This often 

disrupts the rolling schedule due to production batch shortages, or interrupts further 

upstream the melting schedule due to urgent need of specific billet types for a production 

batch cycle. Such occurrences are common in practice and create significant challenge. 

Once such an interruption occurs, the rolling production facility is shutdown completely. 

This requires the production manager to check for other available billet inventory, 

immediately schedule and change the roll train setups, and then restart the rolling process. 

By comparison similar intervention is required at the steelmaking stage. In particular, the 

steelmaking operator will clean up the current in-process tundish, and insert the desired 

grade of steel into the production sequence. This leads to costly production order 

expediting overtime and excess inventory.  

3.2 Scheduling Challenges 

Given the production environment described above, several challenges are summarized. 

The production interruptions possibly cause increased idle time before and after a special 

production batch run. Operationally speaking, both stages incur capacity loss, and result 

in significantly higher production cost according to our observations and discussions with 
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managers in the company. In the extreme case, the rolling facility has been forced to a 

complete stoppage until the upstream steelmaking facility finishes the current production 

of needed product grades. Because the steel manufacturer often operates at or near full 

production capacity, any interruption likely results in delivery delays of other customer 

orders as well. And this further jeopardizes plant profitability and efficiency. Therefore, 

production schedules that coordinate different production stages can more effectively 

control the production cost on a plant-wise level, so that overall production can be 

synchronized (despite the product-specific throughput rates) at lowest production cost.  

 Another challenge facing steel manufacturers is competitiveness in the industry. 

Customer service expectations, namely responsiveness and satisfaction, are high.  

Steelmakers must maintain high customer service levels while evaluating the impact of 

delaying some customers’ orders to satisfy others. Controlling the cost of delaying orders 

(lateness) is as important as reducing production cost. Because the throughput rate is 

product specific and major setups between different steel grades and production 

dimensions consume a significant proportion of available production time, the resulting 

production schedule will influence the order fulfillment rate. In practice, manufacturers 

are committed to reduce late order delivery to stay competitive. Our model addresses 

these challenges together and is discussed next. 

3.3 Model Specification 

The model proposed here is a Mixed Integer Linear Programming (MILP) model. The 

scheduling unit is a single production batch. Each production batch specifies the diameter 

sizes and desired grades of the steel. The steel grades are categorized into several product 

families by the metallurgist. In the steelmaking process, frontline production operators try 
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to aggregate similar grade production batches to smooth the casting process. They try to 

avoid long lead-times and high changeover costs between different product families. In 

the rolling process, frontline operators prefer to batch together similar diameters in order 

to avoid roll train setups and save production time. Each individual batch also has a due 

time and a penalty cost is incurred if the production schedule violates the batch due time 

requirements. The MILP model proposed here aims to minimize the costs incurred by the 

capacity loss during setup and changeovers, and the penalty cost of batch lateness.  

The notations used in the model are listed and defined as follows: 

Parameters 

𝐼!: Inventory indicator for batch i. 0 for no billets inventory, 1 for sufficient billet 

inventory to fulfill current batch orders.  

𝑁: Total number of production batches.  

𝑖, 𝑗:  Production batch index, 𝑖, 𝑗 = 1,… ,𝑁. 𝑖, 𝑗 = 0  is a dummy batch index, it is explicitly 

specified in the model when needed.   

𝐿!: Lateness penalty of a unit period of time for batch i.  

𝐶!": Steelmaking changeover time required between batch i and j.  

𝑆!": Rolling changeover time between batch i and j.  

𝑇!: Total available steelmaking time during the scheduling period.  

𝑇!: Total available rolling time during the scheduling period.  

𝐷!: Due time for production batch i.  

𝑇!!: Processing time for batch i in steelmaking.  

𝑇!!: Processing time for batch i in rolling.  
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𝑇!"#$%: Minimum required break time between steelmaking and rolling for the same 

 batch.  

𝑀: Auxiliary parameter.  

𝛼: Opportunity cost per unit of time for steelmaking process.  

𝛽:  Opportunity cost per unit of time for rolling process.  

 

Decision Variables 

𝑥!": Elements in changeover time matrix of steelmaking process.  

𝑦!": Elements in changeover time matrix of rolling process.  

𝑡!!: Start time of batch i in steelmaking process.  

𝑡!!: Start time of batch i in rolling process. 

𝑙!: Total tardiness of batch i.  

𝑘!: Auxiliary variable of batch i.  

 The model specification is given in equations (1) - (12). Constraint set (5) is 

equivalent to constraint sets (5-1) and (5-2). In order to convert the model into a MILP, 

the two sub-constraints replace equation (5) in the implementation. Decision variable 𝑘! 

and parameter 𝑀 are auxiliary for the purpose of model implementation.  

The Model (SSM)  

  min𝑍 =   𝛼 𝐶!"𝑥!"!! + 𝛽 𝑆!"𝑦!"!! + 𝐿! ∗ 𝑙!!   (1) 

  𝑠. 𝑡. 

  𝑡!! + 𝑇!! + 𝑇!"#$% ∗ 1− 𝐼! ≤ 𝑡!!         ∀  𝑖   (2) 
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  𝑡!! + 𝑇!! + 𝐶!" − 1− 𝑥!" ∙ 𝑇! ≤ 𝑡!!       ∀  𝑖, 𝑗;   𝑖 ≠ 𝑗  (3) 

  𝑡!! + 𝑇!! + 𝑆!" − 1− 𝑦!" ∙ 𝑇! ≤ 𝑡!!       ∀  𝑖, 𝑗;   𝑖 ≠ 𝑗  (4) 

  𝑙! = max 0, 𝑡!! + 𝑇!! − 𝐷!     ∀  𝑖, 𝑖    (5) 

  0 ≤ 𝑙! ≤ 0+𝑀 ∙ 𝑘!         ∀  𝑖     (5-1) 

  𝑡!! + 𝑇!! − 𝐷! ≤ 𝑙! ≤ 𝑡!! + 𝑇!! − 𝐷! +𝑀 ∙ (1− 𝑘!)        ∀  𝑖 (5-2) 

  𝑥!"! = 1− 𝐼!       𝑖 = 1,… ,𝑁; 𝑗 = 0,1,… ,𝑁   (6) 

  𝑥!"! = 1− 𝐼!       𝑗 = 1,… ,𝑁; 𝑖 = 0,1,… ,𝑁   (7) 

  𝑦!" = 1!           𝑗 = 1,… ,𝑁; 𝑖 = 0,1,… ,𝑁   (8) 

  𝑦!" = 1!         𝑖 = 1,… ,𝑁; 𝑗 = 0,1,… ,𝑁   (9) 

  0 ≤ 𝑡!! ≤ 𝑇! − 𝑇!! ,      ∀  𝑖       (10) 

  0 ≤ 𝑡!! ≤ 𝑇! − 𝑇!! ,      ∀  𝑖       (11) 

  𝑘! , 𝑥!" ,𝑦!"   𝑎𝑟𝑒  𝑏𝑖𝑛𝑎𝑟𝑖𝑒𝑠     (12) 

 

 The objective function (1) minimizes the total cost of production batch 

changeovers and batch tardiness penalties. Constraint (2) enforces the rule that any 

production batch scheduled for rolling must complete steelmaking production first. 

Otherwise there should be sufficient billet inventory for rolling. In other words, the 

constraint prevents any schedule conflicts and possible production interruptions. The 

inventory index, 𝐼!, shows whether the production batch in the cooling yard is ready for 

rolling. Constraints (3) and (4) restrain the batch sequence and schedule of the two 

production processes respectively. They require that if batch j is scheduled after batch i, 

then the starting time of batch j must be later than or equal to the starting time of batch i 

plus the necessary processing and changeover time. Constraint (5) computes the lateness 

of batch i. 𝑙! shows how long production batch i has been delayed. Constraints (6) - (9) 

are production batch sequencing requirements. They ensure that each production batch 
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will be scheduled for production once and only once when needed. If certain batches 

have billet inventory available in the cooling yard, they don’t need to be scheduled for 

steelmaking production. Index 0 is for the dummy production batch. Constraints (10) - 

(11) enforce that each production batch must be processed during the current planning 

period. Constraint (12) shows the types of decision variables.  

 The structure of the model proposed here shares similarities with the classic 

vehicle routing problem with time window (VRPTW). VRPTW is known to be NP-hard 

(Fisher et al. 1997, Tang and Wang 2009), and consequently this scheduling model is 

NP-hard. This means that finding an optimal solution to this model requires unrealistic 

time for practical production scheduling. The scheduling problem proposed to solve here 

is tactical rather than strategic, so finding the solution in a short period of time is crucial 

for implementation. As a result, heuristic solutions must be proposed. Detailed problem 

instances are explained in the following subsection.  

3.4 Description of Data Used 

The operational data used in our scheduling model is described by the characteristics of a 

typical order batch. This includes product diameter size, steel grade, and batch processing 

time for both steelmaking and rolling stages. The production batch is the smallest 

scheduling unit for Model (SSM).  

 The details of the data item are shown in Table 2. There are twelve elements in 

each production batch. “ID” is a unique identifier for the production batch. T1 and T2 are 

both start times for steelmaking and rolling, respectively. S1 and S2 are the batch 

sequence numbers for steelmaking and rolling process, respectively. “Quant” specifies 
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the product requirements during the horizon. “Grade” is the required quality of the batch. 

It specifies the chemical composition of the steel, such as concentration of carbon or 

copper. For example, more than 0.6% carbon is considered high carbon steel, and the 

grade shows the specific carbon range. Steelmaking process determines the grade of the 

batch. Impurities like carbon or sulfur are further removed through heating, and other 

desired compositions like chromium or manganese are added. “Size” specifies the wire 

diameter for the batch of steel. A typical range is 0.2 to nearly 2.0 inches. “Inv” is binary 

indicator showing whether or not a particular batch has billet inventory in the cooling 

yard. Billet inventory is in-process inventory that the steel billets are produced in the 

steelmaking stage, and have the required grade already. They are waiting to be cooled 

down and used for rolling production. “Process Time 1” and “Process Time 2” records 

the total time required to finish the steelmaking and rolling for the batch, respectively. 

They both depend on the aggregate volume of the batch, the grade and size of the batch, 

since the throughput rates differ by product.  

Table 2: Data Structure 
1 2 3 4 5 6 7 8 9 10 11 12 

ID T1 T2 S1 S2 Quant Grade Size Due Inv Process 
Time 1 

Process 
Time 2 

 

 Two changeover matrices are used when considering candidate schedules. Once a 

set of production batch instances is generated, a separate look-up routine retrieves the 

corresponding grades’ and sizes’ changeover time, then two changeover matrices are 

constructed for the scheduling model. This “look-up and construct” procedure is 

necessary because the set of production batch instances usually doesn’t include all the 

available steel products. For the purpose of implementing the scheduling model in a 
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convenient way, only a subset of the changeover matrices is selected. A sample of the 

changeover matrix for rolling production is shown in Table 3.  

Table 3: Changeover Time (minutes) Matrix for Rolling Production 
  Size 1 Size 2 Size 3 Size 4 … 

Size 1 * 87 86 83 … 

Size 2 59 * 86 83 … 

Size 3 60 64 * 82 … 
Size 4 63 60 64 * … 

… … … … … … 
 

 The production batch instances are simulated to reflect different characteristics of 

production quantity, and how urgent the batches are. As shown in the literature (Tang et 

al. 2011, Tang and Wang 2009, Fisher et al. 2003), the size of the instance set has the 

most significant impact on the solution time, and even the leading MILP software can 

only find optimal solutions for fairly small problem instances. In order to explore the 

solution experience given different number of production batches, we design an 

experiment and use small problem instances to further study the model.  
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CHAPTER 4 NUMERICAL EXPERIMENTATION AND SOLUTION 

In order to investigate the solution time required to solve the scheduling model proposed 

in Chapter 3, this Chapter discusses the experimental design and the exploratory results 

of solving small-scale problems. The experimental factors include, the data instance size, 

demand pattern (high or low), and due time (tight or slack). Small data instances are 

solved using CPLEX, and we report results of solving the sample data instances. 

4.1 Problem Instance Size 

In general, NP-hard problem with a large-scale data instance cannot be solved to 

optimality within limited time, and the size of the problem generally decides the degree 

of complexity for this type of model. In our model, we assume N batches in the problem 

instance, and assume that all batches need to be processed through steelmaking and then 

rolling. In this case, there are 2(N+1)2 decision variables for the sequencing decision. 

There also are another 2N decision variables needed to assign the start time of each batch, 

N decision variables for the lateness of each batch, then finally N auxiliary decision 

variables for model implementation. In other words, there are 2(N+1)2 + 4N decision 

variables for an instance set with N production batches. The number of constraints is also 

similarly determined. Tang and Yan (2009) concluded that a batching problem such as 

this cannot be reliably solved to optimality within 3600 seconds using CPLEX on a 

capable computer when the planning horizon exceeds 160 days. In their experiment, only 

five out of twenty random problem instances are solved within 3600 seconds using 

CPLEX. Overall, fifteen out of twenty-five instances were not solvable within the time 

limit. Another way to understand the NP-hard nature of the our scheduling model is that 
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it needs to investigate separate schedules for two different stages, and both the sequence 

of the batches and the exact time of production need to be determined. So it shares 

similar characteristics like VRPTW as previously noted.  

 Small size problem instances are generated to better understand the solution time. 

Six levels of problem size are selected, with the number of batches in each instance range 

from 5 to 15. The problems generated are comparable in complexity to those studies in 

the literature. As’ad and Demirli (2011) use 10 data instances to analyze the solution of 

the rolling mill planning model. Their solution times grew to more than 20 hours for 

problems containing over 600 decision variables and more than 1200 constraints. The 

heuristic solution they proposed required more than 16 hours to execute. Based on these 

observations, we believe the batch instance sizes selected here provide a good basic 

understanding of the complexity of the scheduling model.  

4.2 Demand Pattern 

Demand pattern of the problem instance has also been studied in the literature. Tang et al. 

(2012) generate data instances with demand pattern from a uniform distribution, and the 

demands for different instances are generated independently. In their study, the product 

type range is relatively small and concentrated, and each of the products maintains a 

stable level of demand. The steel plant under their study is among top three strip steel 

producers in China, and has a high volume of outputs. So they introduce a high average, 

small variance uniformly distributed demand pattern.  In a different paper, Vanhoucke 

and Debels (2009) used random order quantities between 20 and 40 tons in the 

experiment to study the machine routing and assignment problem of a steel plant in 

Belgium.  
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 The steel manufacturer in our study is a small to medium scale steel company, 

who competes in a niche market with large global steel producers. They offer a wide 

range of products with grade and diameter size combinations. Small order sizes (say of a 

few tons) of steel wire are not uncommon for the company. So there is a need to manage 

these small, highly variable orders in a way that can guarantees high customer service on 

a cost-competitive basis. So a random or uniformly distributed demand pattern with high 

demand volume does not describe in our exact case, but it is possible to consider such a 

scenario. We use a two-level design to reflect the real world demand scenarios. Low 

volume scenario has an average of ten tons volume for each production batch. And in the 

high volume scenario, 20% of the production batches have an average volume of 160 

tons.  

4.3 Order Due Time 

Order due time is also a factor that has been included in scheduling models. It is included 

as another factor as we associate a penalty cost for late order. Order lateness is introduced 

as a trade-off. In many scenarios, a steel manufacturer faces very strict order due time 

requirements in production planning. To guarantee better than average customer service 

level, on-time completion is a priority. In such situations, an overdue order incurs severe 

lateness penalties. Clearly, production batch scheduling would be tightly constrained as 

the number of order batches to schedule increases. This is due to the resulting tighter 

production windows driven by due time of the orders and available production time. 

There are two levels of order due time in our experiment. One is the slack due time 

scenario, where all production batches are due at the end of the planning period. The 

other is the tight due time scenario, where 50% of the production batches are due before 
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the end of the planning period. The due time of these batches are generated with an 

average due time at half the planning horizon, and standard deviation of one eighth of the 

planning horizon.  

Table 4: Factors and Levels in the Experiment 

 

Factor 

Data Instance Size Demand Pattern Due Time 

Levels 5, 7, 9, 11, 13, 15 
High Tight 

Low Slack 

 

 The complete design of experiments is summarized in Table 4. In the full factorial 

experiments, there are 6 levels of instance size, each with 2 levels of demand volume and 

2 levels of due time. This provides 6×2×2 = 24 scenarios in total with each scenario 

replicated 10 times for a total of 240 runs.  

4.4 Initial Solution Experience 

Model (SSM) is solved by using CPLEX 12.5 on a 2.1 GHz dual core CPU computer 

with 4GB memory. We constrain the running time to a maximum of 3600 seconds for 

each small problem instance. In practice, tactical production planning models like Model 

(SSM) must be solved several times weekly as schedules are revised. In a competitive 

commercial market, the schedule evaluation time constraint is even more strict and 

demanding. When changes in order priority and quantity, or unexpected production 

disruptions occur, a feasible and cost-effective plant schedule must be generated. In this 

experimental phase, some problem instances of Model (SSM) could not be solved within 

the time limit.  
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Table 5: Due Time and Demand Scenario 
  Case 1 Case 2 Case 3 Case 4 

Demand Pattern Low Low High High 
Due Time Slack Tight Slack Tight 

 

The CPU utilization and memory utilization are being tracked during each run of 

data instance. In cases that require relative long solution time, CPU utilization exceeds 

90% while memory utilization increases gradually over time. For cases not solvable 

within 3600 seconds, both the CPU and memory utilization approach 100%.  

Table 6: Solution Time (seconds) For Model (SSM) 
Size Case 1 Case 2 Case 3 Case 4 Average 

5 0.269 0.085 0.075 0.038 0.117 
7 0.135 0.104 0.097 0.141 0.119 
9 2.475 1.398 0.336 0.239 1.112 

11 15.043* 4.443 5.228 4.37 4.680** 
13 8.037 7.454 1.775 2.87 5.034 
15 150.199* - 168.559 1761.048 964.804** 

- Not solved within time limit. * Solution with numerical tolerance. ** Case 1 and Case 2 for “Size 15” 
are excluded. 	
  

 

 Table 5 reports the experimental design scenario of due time and demand pattern. 

All instances are solved to optimality except for Case 1 and Case 2 with fifteen batches. 

The average solution time in our initial computational study is reported in Table 6. All 

time values are reported in seconds. Among the 24 instances, Case 2 with instance size 

15 is not solvable. Case 1 with instance sizes of 11 and 15 report solution but with 

numerical tolerance, which is a sign of growing complexity as the instance size grows. 

The relationship is visualized in Figure 2. It is clear that computing time increases along 

with problem size, and it shows a non-linear increasing pattern. This is consistent with 



www.manaraa.com

39 

	
  

the analysis of the model structure, which shows the model falls into the strongly NP-

hard category.  

	
  
         Figure 2: Average Solution Time for Sample Instances 

 

Table 7: Optimal Solution Values of Sample Instances 
Size Case 1 Case 2 Case 3 Case 4 

5 269 112 161 75 
7 225 176 116 265 
9 396 130 180 381 

11 226 145 391 151 
13 398 191 473 170 

     
 

Table 7 summarizes the optimal solutions found for the sample instances. Sample 

instances with fifteen production batches are not included in the table, because two cases 
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are not solved to optimality. The sample instances and their optimal solutions are used in 

following chapters, where meta-heuristic algorithms and computational study are 

discussed. In the next chapter, we discuss the meta-heuristic approaches proposed to 

solve Model (SSM).  
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CHAPTER 5 HEURISTIC APPROACHES 

The scheduling literature shows that for many classes of NP-hard problems, heuristic 

approaches are usually required to solve practical-sized problems. In this study, we found 

that leading commercial software packages could not solve Model (SSM) for even fairly 

small problem instances. This limitation may be due to the multi-stage nature and the 

complex problem structure consisting of linking constraints. As a result, heuristic 

approaches are needed to solve large-scale problem instances.  

In this chapter, we study a new heuristic approach, called Wind Driven 

Optimization (WDO). It was recently applied to solve antenna optimization problems in 

engineering (Bayraktar et al. 2013). To the best of our knowledge, WDO research is scant. 

As the first study of WDO heuristic applied to production scheduling, or scheduling 

research in general, we focus on characterizing the WDO mechanism. We discuss the 

method and adapt it to production scheduling research. In addition, another heuristic 

method, Particle Swarm Optimization (PSO), is also discussed and compared to WDO.  

5.1 WDO 

Nature-inspired optimization techniques, such as Ant Colony Optimization (ACO), 

Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), have proved to be 

effective and efficient in solving production scheduling models in the literature (Table 1). 

Wind Driven Optimization (WDO) is a new global optimization methodology inspired by 

how small air parcels navigate over the three-dimensional space. It follows Newton’s 

second law of motion, unlike other optimization methods mentioned.  
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 “Wind Driven” refers to how the wind blows in the earth’s atmosphere in an 

attempt to balance air pressure differences. Small air parcels travel along the wind from 

high pressure areas to low pressure areas. The pressure value changes as the air parcel’s 

spatial position changes. There are four forces that influence how air parcels move 

spatially. The pressure gradient force (𝐹!" = −∇𝑃𝛿𝑉), which is a major cause, relates to 

pressure gradient, ∇𝑃, and finite mass and volume of the air parcel 𝛿𝑉. The pressure 

gradient force drags air parcels from high pressure areas to low pressure areas. The 

pressure gradient ∇𝑃 is related to 𝑅𝑇, which are the universal gas constant and the 

temperature. A friction force (𝐹! = −𝜌𝛼𝜈), which comes from the resistance from 

surrounding air parcels, applies a counter directional force to change direction. It relates 

to friction parameter 𝛼  and the air parcel velocity 𝜈 . A gravity force (𝐹! = 𝜌𝛿𝑉𝑔) 

represents the earth’s gravitational field, and 𝑔 is the gravity parameter. It causes air 

parcels fall towards the earth surface. A Coriolis force (𝐹! = −2Ω×𝜈), which contributes 

to the deflection of the wind (air parcels) from the current path, is mainly caused by the 

rotation of the earth Ω. 𝜈 is the air parcel velocity. These four forces together govern the 

velocity and position of air parcels when they move in the space. Equations of velocity 

change can be set up according to Newton’s Second Law using the four forces. The 

velocity and position of air parcel change according to the relationships shown in 

equations (13) and (14).  

𝑣!"# = 1 − 𝛼 𝑣!"# − 𝑔 ∙ 𝑥!"# + 𝑅𝑇 !
!
− 1 ∙ 𝑥!"#_!"# − 𝑥!"# + !!!"#!"!!"  !"#

!
 (13) 

𝑥!"# = 𝑥!"# + 𝑣!"#           (14) 
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 𝑣!"#  in equation (13) represents the new velocity of the air parcel. 𝛼 is the 

friction parameter contributing to the change of velocity by reducing the current velocity 

𝑣!"#. The gravity force (parameter 𝑔) applied to the current position changes the velocity 

as well. The position difference between current air parcel and the current optimal air 

parcel is (𝑥!"#_!"# − 𝑥!"#). The current optimal position locates at the lowest pressure 

position, and 𝑖 is the pressure ranking of the current air parcel within the air parcel 

population. So 𝑅𝑇 parameter comes from the pressure gradient force. The last part of 

equation (13) shows the influence of Coriolis force on the new velocity, and it includes 

parameter 𝑐 and a velocity from a different dimension. Equation (14) shows that the new 

air parcel position 𝑥!"# is the sum of its current position 𝑥!"# and new velocity 𝑣!"#.  

 A pressure value is associated with each position of the air parcel, and is used to 

evaluate whether the position under evaluation is the best (lowest pressure). The updating 

mechanism defined in (13) and (14) guides air parcels moving from period to period, and 

each time obtained positions are evaluated by their pressure values to decide where 

should be the best position. In order to better understand the WDO mechanism, we 

describe the PSO technique in following section, and highlight the similarities and 

differences.  

5.2 PSO 

The second heuristic approach examined in this study is the Particle Swarm Optimization 

(PSO). Kennedy and Eberhart (1995) developed this population-based optimization 

method. PSO is inspired by the social system of a flock of flying birds. In the social 

structure of a flock each bird monitors its social behavior and spatial position in the flock 
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guided by both its own objectives, its current best position, and relative to the best (or 

lead) position in the flock. The velocity and position of each bird in the swarm is updated 

iteratively. A fitness value is then associated with the position of each bird, and is used to 

locate the best position. The velocity and position updating mechanisms are summarized 

in equation (15) and (16).  

𝑣!"# = 𝑤 ∙ 𝑣!"# + 𝑐!𝑟𝑎𝑛𝑑() ∙ 𝑔𝑏𝑒𝑠𝑡!"# − 𝑥!"# + 𝑐!𝑟𝑎𝑛𝑑() ∙ 𝑝𝑏𝑒𝑠𝑡!"# − 𝑥!"#  (15) 

𝑥!"# = 𝑥!"# + 𝑣!"#         (16) 

 Coefficient 𝑤 represents the inertia parameter and preserves a proportion of the 

current velocity for the updating new velocity. The best position found in the entire 

swarm and best position found by each bird both influence the velocity update process. 

The member birds in the swarm are influenced to fly towards these two social positions.  

In this context, parameters 𝑐! and 𝑐! are associated with the position impact. Random 

numbers are generated by 𝑟𝑎𝑛𝑑()  and included in the updating. This reflects the 

randomness and relative importance of the global best position versus the individual best 

position during the velocity update stage for each member bird.  

The PSO inertia parameter plays a similar role to the friction parameter used by 

WDO algorithms. Although the WDO and PSO methods do share conceptual similarities 

with the usage of populations, velocities, and (relative) positions, there are fundamental 

differences between the methods. For example, WDO is derived from ideas of air flow 

movement.  PSO is developed from the way a social structure and movement of a system 

of bird swarms. This difference in origin results in the updating mechanism unique to 

each method. Parameters such as 𝑔, 𝑅𝑇, and 𝑐 in WDO cannot be interpreted in a 
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meaningful way in the PSO, so the PSO parameter values reported in previous research 

cannot be translated into WDO settings. Therefore, a numerical study of WDO 

parameters is needed in order to shed new insights and help understand the algorithm’s 

application to other problems.  

5.3 Heuristic Algorithms Implementation 

WDO and PSO algorithm procedures include population initialization, iteratively 

evaluating the pressure (WDO) or fitness (PSO), and updating position and velocity. 

Figure 3 shows a flowchart of the algorithms implementation of both WDO and PSO. 

The best solution found in this procedure is reported as the solution to the problem. In 

order to unveil the potential power of either WDO or PSO to solve the scheduling 

problem at hand, there are two issues need to be addressed. First, interpret the WDO and 

PSO algorithm in the scheduling context. Second, develop a method so that the “position” 

and “velocity” in the scheduling context can be updated, and the objective function can 

be evaluated. 

5.3.1 Interpretation of WDO and PSO in the Context of Scheduling 

The components of WDO and PSO must be interpreted into the scheduling context in 

order to apply it to solve Model (SSM). The position in both algorithms is associated with 

value (pressure value for WDO, fitness value for PSO), which can be used to evaluate the 

position. This relationship is similar to the model solution and objective function value in 

our scheduling context. As a result, position in PSO or WDO represents a complete 

production schedule in Model (SSM), and the pressure value (WDO) or fitness value 

(PSO) is the objective function value of the model. Other analogy of terminology in our 

scheduling problem context, WDO, and PSO are summarized in Table 8. This 
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interpretation will help bridge the understanding of PSO or WDO in the context of 

scheduling problems like Model (SSM). 

	
  
 

 

 

 

 

 

 

 

 

 

Figure 3: Flowchart Showing Algorithm Implementation 
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Table 8: Analogy of Scheduling Terminology in the Context of WDO and PSO 

  Terminology Description 

Scheduling 
context 

A production 
schedule 

A set of 
schedules 

A production 
batch  

Objective 
function 

value 

Production 
schedule 
change 

WDO Position of an 
air parcel Population One dimension 

in position 
Pressure 

value Velocity 

PSO Position of a 
particle Swarm One dimension 

in position 
Fitness 
value Velocity 

 

5.3.2 Random Keys Method 

The important issue in implementing WDO and PSO in the scheduling context is how to 

make the computation of schedules possible, and how to update the “position” and 

“velocity”. A study applying PSO to traveling salesman problem (Zhong et al. 2007) 

proposed a method to compute on traveling sequences directly. Their method uses the 

travelling sequence as the “position”, and defines a set of “plus”, “minus”, and 

“multiplication” operators directly on the sequences. While it solved the traveling 

salesman problem quite effectively, a pitfall of computing on sequences directly is that it 

is additional computational overhead required to manipulate discrete-valued sequences. 

By comparison, PSO and WDO use real numbers. Thus, the computational burden will 

only be magnified when the problem structure is more complicated as is the case for 

Model (SSM). In order to overcome this problem, it is necessary to define the 

computation of “positions” and “velocities” on continuous values, rather than on discrete-

valued sequences. The real number is used as a unique surrogate of the actual position in 

the sequence, and the sequence is recovered through a mapping scheme from the set of 

real numbers. Based on this concept, “position” and “velocity” are both defined as sets of 

real numbers. The PSO and WDO updating mechanism are therefore more efficient.   
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Figure 4: Random Key Method Example with One Air Parcel  

 This mapping method is quite similar to the random keys method introduced by 

Bean (1994). Bean presented a general genetic algorithm using “random keys” method to 

address a variety of sequencing and optimization problems. Random keys are continuous 

values randomly generated for each discrete element in the problem solution. Each 

continuous value is called a “key”, which represents its original discrete element. In the 

PSO and WDO context, each random key represents one element in the position or 

velocity, and is updated in each iteration of the algorithm. The actual solution (sequence) 

to the problem is obtained by sorting random keys from smallest to largest.  

Figure 4 illustrates how random key method works with an example of one air 

parcel (or particle). The air parcel has five batch IDs in it, and has a pair of position and 

velocity. Each batch ID has a value in position and in velocity respectively. The current 

air parcel position and velocity values are shown in the same column of the batch ID they 

are corresponding to. The current production sequence can be recovered from the 

position values by ranking them from the smallest to the largest. It shows in Figure 4 that 

the current sequence is “2 1 5 3 4”. New position values are obtained by adding current 
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position and velocity values according to the algorithm. In Figure 4, add the position and 

velocity values for each batch, and then new position values of the air parcel can be 

obtained. The corresponding new sequence is “3 2 1 5 4” after ranking the position values 

in the same manner. New velocity values can be obtained by following the updating 

mechanism of the algorithm. New production sequence is generated after updating the 

position values for each production batch in the air parcel.  

In our implementation, position and velocity are represented as real number 

values, and randomly generated initially. Production sequences are converted from the 

ranking position values, from smallest to largest. Based on the random keys method, the 

formal definitions of particles in PSO and air parcels in WDO are presented below.  

Definition 1: A particle or an air parcel is a set of random key values in which each value 

corresponds to a production batch. Each production batch to be scheduled in Model (SSM) 

has two key values, one is used for scheduling in the steelmaking stage, and the other is 

used for the rolling stage.  

 For example, assume there are three production batches, namely P1, P2, P3, and 

one particle or air parcel has its random values as [0.1 0.2 0.3, 0.2 0.1 0.3]. We develop 

an ordered data structure for each production stage. So After ordering the key values 

from smallest to largest for each stage, the combined multi-stage production sequence 

can be recovered as [P1 P2 P3, P2 P1 P3].  

Definition 2: The fitness value of a particle (for the PSO), or pressure value of an air 

parcel (for the WDO) refers to the objective function value of the corresponding 

production sequence.  
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The updating mechanism of WDO and PSO can be applied to the air parcel or 

particle structure defined for the Model (SSM), and using the real number key value for a 

batch, the two heuristic algorithms can be effectively implemented as solution procedures 

to the scheduling problem. The updating mechanism is applied to the entire population in 

each iteration until the maximum number of iterations is reached. The algorithm pseudo 

codes for of PSO and WDO are given in Figure 5 and Figure 6, respectively. 

 

	
  
Figure 5: PSO Heuristic Pseudo-code 
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Figure 6: WDO Heuristic Pseudo-code 

 

To the best of our knowledge, there is no other study applying WDO to the 

scheduling literature. As the first study using WDO and PSO in the SSM scheduling 

literature, our goal is to evaluate the relative computational performance of PSO and 

WDO when applied to this scheduling problem. The next chapter details the 

computational study of both WDO and PSO.  
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CHAPTER 6 COMPUTATIONAL STUDY 

The literature shows that PSO methods can solve both production scheduling models and 

classic traveling salesman models quite effectively. However, no studies that examine the 

efficacy of WDO applied to the SSM or PSM scheduling have appeared yet. As a result, 

we first conduct an exploratory numerical study of WDO parameter settings. This is 

needed in order to tune WDO-specific parameter settings for solving large-scale instances 

of SSM. The chapter consists of three sections. The first section details our experience 

with the parameter values for both WDO and PSO using small-scale problems. The next 

section reports results of the computational analysis carried out. Three different methods 

are deployed to analyze WDO and PSO performance, and to identify the preferred 

parameter setting for each algorithm. Finally, the last section reports the relative 

performance comparison of WDO and PSO when solving large-scale data instances of 

Model (SSM).  

6.1 Numerical Parameter Study 

Bayraktar et al. (2013) apply WDO to solve three optimization problems relating to 

antenna design. They perform a numerical parameter study of WDO using four different 

geometrical functions as benchmark functions. The optimal solution and value is known 

for each function, and parameters are selected based on the best average solutions found. 

In their study, large friction parameter value in the range of (0.8, 0.9) is recommended. A 

middle range gravity parameter of (0.6, 0.7) is suggested even though smaller values also 

provide good performance in solving the three different antenna design problems. 

Suggested ranges for parameters “RT” (from Pressure Gradient Forces) and “c” (from 
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Coriolis Forces) fall into (1.0, 2.0) and (0.05, 3.6) respectively. The production 

scheduling problem (Model SSM) investigated in our study has totally different structure, 

so another approach is developed to examine the WDO parameters.  

Table 9: WDO Numerical Parameter Study 
 Data Instance Size 5, 7, 9, 11, 13 

Case Case 1, Case 2, Case 3, Case 4 
α  0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9 
g 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 

RT 0.5, 1, 1.5, 2, 2.5, 3, 3.5 
c 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 2.0, 3.0 

 

 This numerical parameter study examines a wide range of parameter settings. 

Similar number of parameter levels is chosen for each parameter so that the four 

parameters are equally emphasized in the study. Because there is no previous study 

suggesting which parameter is more important than others. Table 9 specifies the 

parameter setting values considered. The data instances solved in the previous chapter are 

used for performance comparison here. The size of data instance varies from 5 to 13 

production batches. Solutions obtained for the 15-batch size problems were not tractable 

so they were excluded from consideration in the parameter study.  

 To compare the performance of WDO with PSO, we used the parameter settings 

listed in Table 10. The inertia parameter 𝑤 seems to play a key role in PSO algorithm 

performance while 𝑐! and 𝑐! (with settings in the range 1.5 or 2) do not have much 

impact. We set 𝑐!at 1.5 and details the impact of 𝑤 and 𝑐!. WDO and PSO techniques 

were used in all problem instances. 
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Table 10: PSO Numerical Parameter Study 
 Data Instance Size 5, 7, 9, 11, 13 

Case Case 1, Case 2, Case 3, Case 4 
w 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

c1, c2 1.5, 2 
 

 Both PSO and WDO algorithms are implemented in Matlab©, and executed in the 

same computing environment as in section 4.4. For performance reasons, the population 

size is ten times the number of batches in a given data instance, and the maximum 

number of iterations allowed is 1000. Each data instance is solved 10 times with the best 

solution found in each repetition recorded. Tables 11 and 12 show a sample of the 

parameter study results of WDO and PSO. The columns include number of batches, case 

id, and repetition run of the problem instance, parameter value, and best solution found 

for the particular run. The solution value varies noticeably with different parameter value 

settings. For example, the optimal solution of one problem instance is 225, and the 

solution value found in a particular run could be between 225 and 275 given different 

combinations of parameter setting. This solution value variation exhibited in the results 

may imply that parameter settings have significant impact on solution values obtained 

from the heuristics. The following section investigates such influences.   

Table 11: A Sample of WDO Numerical Parameter Study Result 
Batch Case Repetition α  g RT c Best Value 

5 1 1 0.1 0.1 2 0.7 269 
7 1 4 0.6 0.7 2.5 0.5 225 
9 2 1 0.8 0.1 3 2 130 

11 3 2 0.1 0.7 3 0.5 392 
13 2 7 0.1 0.7 1.5 2 199 
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Table 12: A Sample of PSO Numerical Parameter Study Result 
Batch  Case  Repetition w c1 c2 Best Value 

5 1 1 0.7 1.5 1.5 269 
7 2 6 0.6 1.5 1.5 176 
9 3 7 0.4 1.5 1.5 180 

11 4 10 0.2 1.5 2 115 
13 1 8 0.1 1.5 2 427 

 

6.2 Analysis of Result 

In order to select the proper parameter values leading to good algorithm performance, a 

three-step parameter selection process is used. This includes ANOVA analysis, top 

performing parameter setting, and response surface observation. Each of the three 

processes is detailed in the following sub-sections. 

6.2.1 ANOVA Analysis 

ANOVA is a useful tool for investigating the underlying structure of factors associated 

with conducting experiments. The method explains, with statistical reliability, the overall 

effect of factors’ levels on the variables under consideration. We perform ANOVA 

analysis of WDO and PSO solution quality performance on the parameter levels 

introduced earlier. In this study, we evaluate solution gap and solution time as influenced 

by these parameter settings. 

The solution gap is computed for each run of WDO and PSO in the parameter 

study. It is defined as the percentage of difference between the obtained solution value 

and the optimal value (equation 17). Solution quality performance is defined as 1 – 

Solution Gap (equation 18). Larger solution quality performance value (close to or equal 

to 1) is considered as better heuristic performance.  
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𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝐺𝑎𝑝 = !"#$%&'(  !"#$%!!"#$%&'  !"#$%
!"#$%&'  !"#$%

×  100%   (17) 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑄𝑢𝑎𝑙𝑖𝑡𝑦  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1− 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝐺𝑎𝑝   (18) 

 

Solution quality performance could be negative if the (best) obtained solution 

value is too large (more than 2 times optimal value), since Model (SSM) is a 

minimization problem. But in our study, we don’t observe such phenomenon. All 

solution quality performance fell between 0 and 1.  

Table 13: WDO ANOVA Analysis on Solution Quality Performance 
  Df SumSq MeanSq F P-value Pr(>F) 
Factor: α 6 95 15.762 581.6 <2e-16 *** 
Residuals 548793 14872 0.027       
Factor: g 6 92 15.326 565.5 <2e-16 *** 
Residuals 548793 14875 0.027       
Factor: RT 6 116 19.366 715.7 <2e-16 *** 
Residuals 548793 14850 0.027       
Factor: c 7 45 6.486 238.5 <2e-16 *** 
Residuals 548792 14921 0.027       
Significant codes:  ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1 

 

 Table 13 reports the ANOVA main effect results for WDO solution quality 

performance while using the four parameters as factors. All four WDO parameters are 

found to have a significant influence on algorithm’s quality performance for Model SSM. 

It suggests that the value settings on 𝛼, 𝑔, 𝑅𝑇, and 𝑐 significantly influence the quality 

performance of WDO algorithm. To further explore these differences, a Tukey multiple 

comparison test on all four parameters was performed. The results are summarized in 

Tables 14 - 17. The first column tells which two parameter levels are compared. For 

example in Table 14, “Level 6 vs. Level 7” in the first row indicates that “average 
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solution quality performance difference between parameter 𝛼 setting at level 6 and level 

7”. Level 7 in 𝛼 setting is 0.9, and Level 6 corresponds to 0.8. The “Difference” column 

tells the average solution performance difference. “Lower Bound” and “Upper Bound” 

present the lower and upper bound of the difference. The last column shows the p-value 

at 95% confidence level. Small p-value (>0.05) indicates significant difference between 

the average solution performances under comparison. Statistically it means solution 

performance under one parameter level setting is better than the other if the difference is 

positive. In Table 14 – 17, better-performed parameter levels are shown in the bottom of 

the table.  

   Table 14: Tukey Multiple Comparisons of Solution Quality Performance (WDO, α) 
*Parameter Difference Lower Bound Upper Bound P-Value 

Level 6 vs. Level 7 0.0010 -0.0014 0.0035 0.8732 
Level 4 vs. Level 7 0.0019 -0.0006 0.0043 0.2603 
Level 3 vs. Level 7 0.0063 0.0039 0.0088 0.0000 
Level 2 vs. Level 7 0.0161 0.0136 0.0185 0.0000 
Level 1 vs. Level 7 0.0385 0.0360 0.0409 0.0000 
Level 4 vs. Level 6 0.0008 -0.0016 0.0033 0.9510 
Level 3 vs. Level 6 0.0053 0.0028 0.0077 0.0000 
Level 2 vs. Level 6 0.0151 0.0126 0.0175 0.0000 
Level 1 vs. Level 6 0.0374 0.0350 0.0399 0.0000 
Level 7 vs. Level 5 0.0002 -0.0023 0.0026 1.0000 
Level 6 vs. Level 5 0.0012 -0.0012 0.0037 0.7652 
Level 4 vs. Level 5 0.0021 -0.0004 0.0045 0.1665 
Level 3 vs. Level 5 0.0065 0.0041 0.0090 0.0000 
Level 2 vs. Level 5 0.0163 0.0138 0.0187 0.0000 
Level 1 vs. Level 5 0.0387 0.0362 0.0411 0.0000 
Level 3 vs. Level 4 0.0044 0.0020 0.0069 0.0000 
Level 2 vs. Level 4 0.0142 0.0118 0.0167 0.0000 
Level 1 vs. Level 4 0.0366 0.0342 0.0391 0.0000 
Level 2 vs. Level 3 0.0098 0.0073 0.0122 0.0000 
Level 1 vs. Level 3 0.0322 0.0297 0.0346 0.0000 
Level 1 vs. Level 2 0.0224 0.0199 0.0248 0.0000 

*α: Level 1 - 0.1, Level 2 - 0.3, Level 3 - 0.5, Level 4 - 0.6, Level 5 - 0.7, Level 6 - 0.8, Level 7 - 0.9 

WDO study in antenna optimization problems suggests using large values of 𝛼 

(0.8 to 0.9). However, in our study, the result shows that small 𝛼 values seem to generate 
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better solutions to Model (SSM). This finding could be explained by the fundamentally 

different problem structure in our SSM scheduling study. The Tukey multiple comparison 

results also show that the mechanisms of WDO and PSO are in fact quite different, 

because all parameters in WDO have a significant impact on solution performance.  

Table 15: Tukey Multiple Comparisons of Solution Quality Performance (WDO, g) 
*Parameter Difference Lower Bound Upper Bound P-Value 
Level 2 vs. Level 1 0.0041 0.0016 0.0065 0.0000 
Level 3 vs. Level 1 0.0134 0.0110 0.0159 0.0000 
Level 4 vs. Level 1 0.0207 0.0182 0.0231 0.0000 
Level 5 vs. Level 1 0.0290 0.0266 0.0315 0.0000 
Level 6 vs. Level 1 0.0334 0.0309 0.0358 0.0000 
Level 7 vs. Level 1 0.0348 0.0323 0.0372 0.0000 
Level 3 vs. Level 2 0.0093 0.0069 0.0118 0.0000 
Level 4 vs. Level 2 0.0166 0.0142 0.0191 0.0000 
Level 5 vs. Level 2 0.0249 0.0225 0.0274 0.0000 
Level 6 vs. Level 2 0.0293 0.0268 0.0318 0.0000 
Level 7 vs. Level 2 0.0307 0.0282 0.0331 0.0000 
Level 4 vs. Level 3 0.0073 0.0048 0.0097 0.0000 
Level 5 vs. Level 3 0.0156 0.0132 0.0181 0.0000 
Level 6 vs. Level 3 0.0200 0.0175 0.0224 0.0000 
Level 7 vs. Level 3 0.0214 0.0189 0.0238 0.0000 
Level 5 vs. Level 4 0.0083 0.0059 0.0108 0.0000 
Level 6 vs. Level 4 0.0127 0.0102 0.0151 0.0000 
Level 7 vs. Level 4 0.0141 0.0116 0.0165 0.0000 
Level 6 vs. Level 5 0.0044 0.0019 0.0068 0.0000 
Level 7 vs. Level 5 0.0057 0.0033 0.0082 0.0000 
Level 7 vs. Level 6 0.0014 -0.0011 0.0038 0.6413 

*g: Level 1 – 0.05, Level 2 – 0.1, Level 3 – 0.2, Level 4 – 0.3, Level 5 – 0.5, Level 6 – 0.7, Level 7 – 0.9 

 

  Table 16: Tukey Multiple Comparisons of Solution Quality Performance (WDO, RT) 
*Parameter Difference Lower Bound Upper Bound P-Value 

Level 2 vs. Level 1 0.0029 0.0004 0.0053 0.0102 
Level 3 vs. Level 1 0.0084 0.0060 0.0109 0.0000 
Level 4 vs. Level 1 0.0198 0.0173 0.0222 0.0000 
Level 5 vs. Level 1 0.0311 0.0286 0.0335 0.0000 
Level 7 vs. Level 1 0.0363 0.0338 0.0387 0.0000 
Level 6 vs. Level 1 0.0365 0.0340 0.0389 0.0000 
Level 3 vs. Level 2 0.0056 0.0031 0.0080 0.0000 
Level 4 vs. Level 2 0.0169 0.0145 0.0194 0.0000 
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Level 5 vs. Level 2 0.0282 0.0257 0.0306 0.0000 
Level 7 vs. Level 2 0.0334 0.0310 0.0359 0.0000 
Level 6 vs. Level 2 0.0336 0.0311 0.0360 0.0000 
Level 4 vs. Level 3 0.0113 0.0089 0.0138 0.0000 
Level 5 vs. Level 3 0.0226 0.0202 0.0251 0.0000 
Level 7 vs. Level 3 0.0278 0.0254 0.0303 0.0000 
Level 6 vs. Level 3 0.0280 0.0256 0.0305 0.0000 
Level 5 vs. Level 4 0.0113 0.0088 0.0137 0.0000 
Level 7 vs. Level 4 0.0165 0.0141 0.0190 0.0000 
Level 6 vs. Level 4 0.0167 0.0142 0.0191 0.0000 
Level 7 vs. Level 5 0.0052 0.0028 0.0077 0.0000 
Level 6 vs. Level 5 0.0054 0.0029 0.0078 0.0000 
Level 6 vs. Level 7 0.0002 -0.0023 0.0026 1.0000 

*RT: Level 1 – 0.5, Level 2 – 1.0, Level 3 – 1.5, Level 4 – 2.0, Level 5 – 2.5, Level 6 – 3.0, Level 7 – 3.5 

  Table 17: Tukey Multiple Comparisons of Solution Quality Performance (WDO, c) 
*Parameter Difference Lower Bound Upper Bound P-Value 

Level 3 vs. Level 1 0.0009 -0.0018 0.0036 0.9693 
Level 4 vs. Level 1 0.0018 -0.0009 0.0045 0.4473 
Level 5 vs. Level 1 0.0036 0.0009 0.0063 0.0015 
Level 6 vs. Level 1 0.0045 0.0018 0.0072 0.0000 
Level 7 vs. Level 1 0.0171 0.0144 0.0198 0.0000 
Level 8 vs. Level 1 0.0262 0.0235 0.0289 0.0000 
Level 1 vs. Level 2 0.0008 -0.0019 0.0035 0.9838 
Level 3 vs. Level 2 0.0017 -0.0010 0.0044 0.5103 
Level 4 vs. Level 2 0.0026 0.0000 0.0053 0.0587 
Level 5 vs. Level 2 0.0044 0.0017 0.0071 0.0000 
Level 6 vs. Level 2 0.0053 0.0026 0.0080 0.0000 
Level 7 vs. Level 2 0.0179 0.0152 0.0206 0.0000 
Level 8 vs. Level 2 0.0270 0.0243 0.0297 0.0000 
Level 4 vs. Level 3 0.0009 -0.0018 0.0036 0.9721 
Level 5 vs. Level 3 0.0027 0.0000 0.0054 0.0572 
Level 6 vs. Level 3 0.0036 0.0009 0.0063 0.0017 
Level 7 vs. Level 3 0.0162 0.0135 0.0189 0.0000 
Level 8 vs. Level 3 0.0253 0.0226 0.0280 0.0000 
Level 5 vs. Level 4 0.0018 -0.0009 0.0045 0.5038 
Level 6 vs. Level 4 0.0026  -0.0001 0.0053 0.0591 
Level 7 vs. Level 4 0.0153 0.0126 0.0180 0.0000 
Level 8 vs. Level 4 0.0244 0.0217 0.0271 0.0000 
Level 6 vs. Level 5 0.0009  -0.0018 0.0036 0.9738 
Level 7 vs. Level 5 0.0135 0.0108 0.0162 0.0000 
Level 8 vs. Level 5 0.0226 0.0199 0.0253 0.0000 
Level 7 vs. Level 6 0.0126 0.0099 0.0153 0.0000 
Level 8 vs. Level 6 0.0217 0.0190 0.0244 0.0000 
Level 8 vs. Level 7 0.0091 0.0064 0.0118 0.0000 

*c: Level 1 - 0.1, Level 2 - 0.3, Level 3 - 0.5, Level 4 - 0.7, Level 5 - 0.9, Level 6 - 1, Level 7 - 2, Level 8 - 3 
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The analysis of parameter 𝑔 also shows quite different result from prior studies. 

In contrast to the previous study, the results show that large rather than small values of 𝑔 

are suggested for solving the problem we proposed. The analysis also shows that higher 

levels of parameter 𝑅𝑇 and 𝑐 are preferred. In the updating mechanism, 𝑅𝑇 contributes to 

influencing the air parcel to move towards the incumbent best position, and 𝑐 helps 

introduce randomness to the current air parcel as it introduces position information from 

other nearby air parcels in the population.  

Table 18: PSO ANOVA Analysis on Solution Quality Performance 
  Df SumSq MeanSq F P-value Pr(>F) 
Factor: w 2 0.2300 0.1150 9.96 <.0001 *** 
Factor: c2 1 0.0148 0.0148 1.28 0.2573  Interaction 2 0.0008 0.0004 0.04 0.9649  
Significant codes:  ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1     

 

 Results of the PSO ANOVA are summarized in Table 18. The nine levels of 𝑤 

are grouped into 3 categories, namely small (0.1, 0.2, 0.3), medium (0.4, 0.5, 0.6), and 

large (0.7, 0.8, 0.9). The ANOVA doesn’t include 𝑐! because all factor ANOVA result 

shows that 𝑐! is not significant. In Table 18, it shows that 𝑤 has significant influence on 

solution quality performance, and that parameter 𝑐! has no noticeable influence on PSO 

performance. The Tukey multiple comparison test (Table 19) also suggests PSO achieves 

significantly better performance on larger values of 𝑤. Higher 𝑤 values mean that new 

velocity preserves more of current velocity into it. PSO can obtain best solution value 

faster with high value 𝑤 for the same problem instance. This result is consistent with the 

finding in previous studies that 𝑤 is a key factor in PSO algorithm and usually has 

significant impact on the performance.  



www.manaraa.com

61 

	
  

 

  Table 19: Tukey Multiple Comparisons of Solution Quality Performance (PSO, w) 
 Parameter Difference Lower Bound Upper Bound Pr(>F) 
Large - Medium 0.0125 0.0022 0.0227 *** 
Large - Small 0.0193 0.0090 0.0296 *** 
Medium - Small 0.0069 -0.0034 0.0171   

 

 These analyses help us to characterize preferred parameter values that, in turn, 

provide a foundation of further investigation of heuristic performance (time or quality). 

The results for parameters 𝛼 and 𝑔 highlight the importance of the parameter study when 

applying WDO to different classes of problems as in our study. To fine tune the proper 

parameter values for our proposed Model (SSM), the top-performing parameter values 

are examined next. 

6.2.2 Top Performing Parameter Settings 

We conducted analyses of a grand total of twenty problem instances in our experimental 

design. The top forty quality performance values from the 2744 parameter combinations 

for solving each case are selected for analysis so that we could identify the overall trends 

or patterns leading to top solution performance quality. In order to help differentiate the 

top performing parameter values from others, cases with batch number smaller than 9 are 

excluded, because most runs in such cases found optimal solutions. For each parameter in 

WDO and PSO, frequency counts of parameter values are recorded. There are a total of 

480 counts for each parameter. This provides an alternative perspective to studying the 

parameter settings.  

 Figures 7-10 illustrate the historical plots of the levels of four parameters among 

the top performing WDO runs. It shows that friction parameter 𝛼  has the highest 
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frequency count at value 0.1, and gravity parameter 𝑔 = 0.9 appears most frequently. 

The results are consistent with the founding in ANOVA analysis, and provide more 

evidence for selecting proper parameter values. It also can be observed that 𝑅𝑇 and 𝑐 

prefers medium to large values. Historical plots of the four parameters on each problem 

instance size show similar patterns as Figures 7-10. Based on the results of both ANOVA 

analysis and historical plot of top performing parameters, we select 𝛼 = 0.1 and 𝑔 = 0.9 

to further explore the combined results of all four parameters in the next sub-section.  

 

 

	
  
       Figure 7: (WDO) Frequency Plot of α  values 
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      Figure 8: (WDO) Frequency Plot of g values 

 

	
  
   Figure 9: (WDO) Frequency Plot of RT values 
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Figure 10: (WDO) Frequency Plot of c values 

	
  

	
  
Figure 11: (PSO) Frequency Plot of w values 

 



www.manaraa.com

65 

	
  

 

 
Figure 12: (PSO) Frequency Plot of c2 values 

	
  

Figures 11 and 12 report the frequency plots of parameters 𝑤 and 𝑐! for the PSO 

heuristic. They are both consistent with the ANOVA analysis results suggesting that large 

values of 𝑤 are important, while levels of 𝑐! (Figure 12) seem to have no noticeable 

influence. As a result, we chose settings of 𝑤 = 0.7, 𝑐! = 2 for use in solving the large-

scale data instances. 

6.2.3 Response Surface 

In order to interpret the combined results of all parameter settings in WDO, we set 

𝛼 = 0.1,𝑔 = 0.9, and plot a three-dimensional the response surface of average “Solution 

Gap” defined in Equation (17). And all levels of 𝑅𝑇 and 𝑐 are included. In Figure 13, the 

lowest point indicates the preferred parameter settings as small solution gap means better 
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heuristic performance. It can be observed that lowest solution gap in the figure appears at 

𝑅𝑇 = 2.5, 𝑐 = 2. The combined results (of the ANOVA analysis, the top-forty analysis, 

and the response surface) provided considerable confidence in selecting the WDO 

parameter values for 𝛼,𝑔,𝑅𝑇, 𝑐 = (0.1, 0.9, 2.5, 2)  for solving large-scale problem 

instances.   

 
Figure 13: WDO Response Surface of Solution Gap (RT and c) 

	
  

 The corresponding response surface of solution time is presented in Figure 14. It 

can be discovered that the average solution time for each run is around one second. The 

best solution time observed is at parameter levels 𝛼,𝑔,𝑅𝑇, 𝑐 = (0.1, 0.9, 1, 3) . 

Parameter levels that have lowest solution gap in Figure 13 also show short solution time, 
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which is less than one second. Given the fact that the solution quality is relatively more 

important, and the solution time difference is fairly small and acceptable for usual 

computing environment, we choose the parameter levels that minimize solution gap in 

solving large-scale problem instances.  

 

 

 
Figure 14: WDO Response Surface of Solution Time in Seconds (RT and c) 

 



www.manaraa.com

68 

	
  

6.3 Performance Comparison on Large Data Instances 

Large data instances are generated based on the 4 cases shown in Table 6. The number of 

batches in the instances is set to 150, 160, 170, 180, and 190. Problems as this scale, even 

using the leading commercial packages such as CPLEX, cannot be solved in the usual 

computing environment practically. Two distinct problem instances are generated at each 

data instance size, each case. There are forty large problem instances in total. In terms of 

production planning horizon, the total production time available (production capacity) 

reflects a seven-day horizon, and assumes 24-hour continuous production. We discuss 

experience with problem instances and the population structure used in WDO and PSO in 

this section. 

Because we randomly generated our problem instances, infeasible solutions can 

result when there is insufficient production capacity available. In such cases, the problem 

instance cannot be used to evaluate the performance of the heuristics for our purposes 

here.  To mitigate this problem however, we pre-process (pre-asses and adjust) problem 

instances in order to ensure planning horizon feasibility. We performed a two-step pre-

assessment, and adjustment to the production capacity as needed. In the first step, the 

total aggregate capacity requirements check is performed for both steelmaking and 

rolling. In the second step, the ten replications of each problem instance are solved using 

PSO. For these larger problems we now use a 14-day planning horizon rather than a 

seven-day horizon as before.  The obtained changeover times by PSO for both production 

stages are used. In either stage, if the batch processing time plus the changeover time is 

longer than the planned production horizon, then the problem instance is treated as 

infeasible. We found that problem instances with high demand pattern required more 
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processing time. As a result, we augmented the planning horizon up to the minimum 

requirement during the capacity adjustment phase discussed earlier. In some cases, we 

extended the production capacity buffer by one week. We consider this to be consistent 

with actual practice, as production schedulers usually want tactical insight into the 

minimum horizon length required for a set of jobs at any given time. All problem 

instances are solved by both WDO and PSO. 

 The number of columns in random keys matrix is set to be ten times the number 

of batches for both heuristics. Each column represents one air parcel (WDO) or particle 

(PSO). As problem complexity increases with problem size (number of batches), varying 

the size of random keys matrix proportionally with the problem size may potentially help 

to search the solution space more effectively though at the expense of increased 

computing time. The initial keys used for position and velocity value are generated 

randomly. They are then perturbed and re-sequenced in order to search more effectively 

and quickly. For problem instances with very low due flexibility, the initial random keys 

matrix is divided evenly. For example, we know that the production batches with tight 

due time are generally assigned high priority by schedulers since the lateness penalty can 

be very costly to manufacturer. Therefore, in these cases one-half the random keys matrix 

is allocated to smaller random keys that are used for these high priority batches. The 

other half of the matrix has completely random keys as the normal case. In this way, we 

can add priority information into the initial random keys matrix to make it search more 

effectively, and at the same time maintain the randomness of the whole matrix.  

 PSO and WDO are implemented and executed using Matlab© on a 2.0 GHZ quad-

core personal computer with 4-gigabyte memory. All problem instances are solved ten 



www.manaraa.com

70 

	
  

times using a unique, randomly generated initial population. The maximum iteration is 

now 2000. The best solution found in each run is recorded along with solution time. The 

results are summarized in Table 20. First two columns show the problem size and case id, 

respectively. The third and fourth columns record the best solution values found in ten 

repetition runs by PSO and WDO, respectively. The fifth column reports the calculated 

percent of solution improvement of WDO over PSO. For example, the first row, this 

improvement is (6225 – 5995) / 6225 = 3.69%. The sixth (Average PSO) and seventh 

(Average WDO) columns list the average of best solutions found in each set of ten 

repetitions. This can be interpreted as the overall solution quality of across all PSO and 

WDO runs. The last column lists the improvement in average solution values across all 

PSO and WDO runs. Figure 15 illustrates the average solution value improvements by 

cases across different problem instance sizes. It shows that WDO consistently 

outperforms PSO on all cases and problem instance sizes.  

 Negative percentage values in the two improvements columns indicate instances 

where PSO outperforms WDO. Among all the problem instances, only one instance 

(problem size 190, case 3) resulted in a solution value found by PSO was better than that 

was found by WDO, and the improvement is only 0.04%. For the same problem instance, 

the average solution quality of WDO was 3.24% better than that of PSO, and it is a 

noticeable difference. For all other problem instances, WDO outperforms PSO by a very 

remarkable margin. WDO shows an average improvement of 5.70% (best solution value) 

and 5.16% (average solution value) on all problem instances. Given the dominant 

performance results reported, we find that WDO does seem to be superior to PSO in 

solving the production scheduling Model (SSM) proposed in this study.  
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Table 20: WDO and PSO Large Sample Performance Comparison 

Size Case Best PSO 
Solution 

Best WDO 
Solution 

𝑩𝒑𝒔𝒐 − 𝑩𝒘𝒅𝒐
𝑩𝒑𝒔𝒐

 Average 
PSO 

Average 
WDO 

𝑨𝒑𝒔𝒐 − 𝑨𝒘𝒅𝒐
𝑨𝒑𝒔𝒐

 

150 1 6225 5995 3.69% 6656.4 6425.3 3.47% 
150 1 7356 6789 7.71% 7704.0 7221.5 6.26% 
150 2 6477 6019 7.07% 6657.7 6234.1 6.36% 
150 2 5552 5031 9.38% 5859.2 5520.0 5.79% 
150 3 6169 5936 3.78% 6448.7 6133.0 4.90% 
150 3 5911 5303 10.29% 6075.3 5625.4 7.41% 
150 4 5816 5520 5.09% 6041.1 5796.1 4.06% 
150 4 6241 5390 13.64% 6389.3 5974.7 6.49% 
160 1 7094 6654 6.20% 7344.7 6945.6 5.43% 
160 1 6426 6152 4.26% 6764.1 6593.8 2.52% 
160 2 6173 6014 2.58% 6545.7 6386.5 2.43% 
160 2 6559 6140 6.39% 6800.7 6397.4 5.93% 
160 3 6584 6474 1.67% 6980.8 6730.7 3.58% 
160 3 7146 6632 7.19% 7427.8 7093.3 4.50% 
160 4 6461 6028 6.70% 6739.4 6442.2 4.41% 
160 4 6888 6521 5.33% 7261.2 6799.4 6.36% 
170 1 7395 7047 4.71% 7861.8 7328.4 6.78% 
170 1 7454 6908 7.32% 7730.8 7388.9 4.42% 
170 2 8130 7476 8.04% 8257.9 7783.5 5.74% 
170 2 7545 7371 2.31% 8168.9 7682.3 5.96% 
170 3 7437 6967 6.32% 7686.8 7389.5 3.87% 
170 3 6850 6246 8.82% 7133.7 6909.4 3.14% 
170 4 7412 6812 8.09% 7734.4 7309.1 5.50% 
170 4 6310 6289 0.33% 6985.5 6625.1 5.16% 
180 1 7806 7346 5.89% 8204.7 7703.5 6.11% 
180 1 7286 6981 4.19% 7884.8 7370.4 6.52% 
180 2 7894 7285 7.71% 8281.7 7667.4 7.42% 
180 2 7910 7125 9.92% 8171.4 7551.0 7.59% 
180 3 7748 7190 7.20% 7945.1 7542.2 5.07% 
180 3 7140 6410 0.22% 7452.8 7008.5 5.96% 
180 4 7346 6956 5.31% 7528.9 7281.2 3.29% 
180 4 7519 7428 1.21% 7978.7 7582.2 4.97% 
190 1 7676 7228 5.84% 7882.2 7572.9 3.92% 
190 1 7824 7222 7.69% 8163.9 7663.8 6.13% 
190 2 8668 8069 6.91% 8988.3 8472.5 5.74% 
190 2 8700 8276 4.87% 9072.2 8645.6 4.70% 
190 3 7731 7213 6.70% 7862.7 7575.8 3.65% 
190 3 7427 7430 -0.04% 7924.5 7667.8 3.24% 
190 4 7385 7158 3.07% 7988.2 7427.7 7.02% 
190 4 7253 6943 4.27% 7634.0 7279.4 4.65% 
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Figure 15: Percentage of Average Solution Value Improvement using WDO over PSO 
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CHAPTER 7 CONCLUSION 

In this dissertation, we investigate a multi-stage production scheduling problem in the 

integrated steel manufacturing industry, and our contribution is two-fold. First, we 

proposed a MILP Model (SSM) to address the tactical scheduling problem for the two-

stage steel manufacturing scenario (namely steelmaking and rolling decisions). The 

complicated nature of operations at steel plants worldwide, and the fierce market 

competition require more comprehensive control of cost and efficiency. It is this exact 

issue we are trying to address here. Second, it is well-known that sequence-depending 

changeover scheduling problems are difficult to solve optimally even for certain small-

scale instances. Therefore we develop heuristic methods to solve large-scale problem 

scenarios observed in practice.  

 We applied a new heuristic method, WDO, to solve the proposed Model (SSM). 

To the best of our knowledge, this is the first study to apply WDO to production 

scheduling research, or any research in scheduling. Numerical parameter study is 

presented before solving large-scale problem instances. It provides new insights on the 

parameter settings when applying WDO to scheduling problems. The new findings on 

parameter preference for our model compared to what has been suggested by prior 

studies refresh the understanding of WDO, and it provides a foundation for future WDO 

research in different scheduling problems.   

 The performance of WDO is compared with a well-studied heuristic method, PSO. 

WDO outperforms PSO by a noticeably margin in all forty large problem instances 

randomly generated, except for one instance in which the best solution found by the two 
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heuristics tied closely. The average improvement of WDO over PSO is 5.70% for the best 

solutions found. Average solutions found by WDO improve 5.16% over those by PSO. 

More research and applications are needed to make the general the conclusion that which 

heuristic method is superior because research on WDO is scant.   

 Future research areas can be developed in two streams. From the application 

perspective, the scheduling model could be extended to even more complex production 

processes, or more production stages such as the finishing stage in integrated steel 

production. On the heuristic side, WDO is far from being fully explored and studied. 

There are many open areas such as parameter settings for other applications, performance 

comparison with other heuristics on different problems. PSO has been studied for almost 

20 years since it is originally introduced in 1995, but WDO hasn’t even taken off yet if 

comparing it to the PSO development period. So more studies and applications are 

needed in the future, and they will contribute to further explore the WDO heuristic, and 

uncover more of its potential.  
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